Full width home advertisement

Post Page Advertisement [Top]

 R code for Fuzzy C-Means Clustering


For using fuzzy c-means you need to install the cluster package for clustering algorithms and use fanny() function for fuzzy c-means

#Fuzzy c-means clustering
library(factoextra) # Custom visualizations for clusters
library(tidyverse) # Data handling
library(cluster) # Clustering algorithms
# importing the data
data <- read_csv('iris.csv')
data <- data[,-1]
# Modify the data,
# create unique names for each row by adding species type to row number
# then add column species to rownames
data <- data %>%
group_by(Species) %>%
mutate(spec_idx = row_number()) %>%
unite('Species', Species, spec_idx, sep="-", remove=TRUE) %>%
column_to_rownames('Species')
# fanny() function from cluster packages is
# for fuzzy c-means clustering algorithm
# we are also defining 3 clusters to create.
res.fanny <- fanny(data,3)
# Look at the membership coefficients of first 7 element
head(res.fanny['membership'], 7)
# Cluster plot
fviz_cluster(res.fanny, ellipse.type = "convex",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
ggtheme = theme_minimal(),
legend = "right")
view raw fuzzy.R hosted with ❤ by GitHub
Output:

5

Visit Github to download code - Click Here



No comments:

Post a Comment

Bottom Ad [Post Page]